4. a) A molecule on proper excitation undergoes photochemical dissociation. Draw the potential energy curves for the ground state and excited state of the molecule.

b) For the photochemical reaction, $A_2 \xrightarrow{hv} 2A$, the following mechanism has been proposed

$$A_2^{hv}A_2^*;$$
 $A_2^{*}^{*}^{2}2A;$ $A_2^{*}+A_2^{*}^{3}2A_2$

RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. SIXTH SEMESTER EXAMINATION, MAY 2019

THIRD YEAR [BATCH 2016-19]

: 03/05/2019

: 11 am – 1 pm

Date

Time

CHEMISTRY (Honours) Paper: VIII [Gr. A & D]

Full Marks : 50

[12 marks]

[Use a separate Answer Book for each group]

<u>Group – A</u>						
UNIT-I						

[Attempt only]

- 1. a) What are the two important conditions to be satisfied for a molecular motion to be activated by a proper electromagnetic radiation? Explain involving the transition moment integral. [3] b) The rotation of HI molecules may be considered as an orbiting of H atom at a radius of 160 pm with I atom virtually stationary at the centre. What would be the wavelength of the radiation emitted for the transition from 1st excited to ground state ? $\left[\mu_{HI} = 1.64 \times 10^{-24} \text{ gm}\right]$ [3] c) The fundamental and the first overtone transitions of ${}^{14}N^{16}O$ are centred at 876.06 cm⁻¹ and 3724.20 cm⁻¹ respectively. Calculate the exact zero point energy. [3] d) How would you determine the atomic mass of C¹³ accurately using rotational absorption spectroscopy? [3] a) State the experimental observations supporting the anharmonic vibration of a diatomic 2. molecule A-B. Explain the observations. [3] b) The symmetric stretching of CO_2 is IR inactive but Raman active. Explain. [3] c) Pure rotational spectroscopy is incapable to determine the equilibrium bond length of a homonuclear diatomic molecule. Justify or criticize it. [2] d) The fundamental vibration frequency of $H^{35}Cl$ is 8.667×10¹³ sec⁻¹. What would be the separation between the IR absorption lines for H³⁵Cl and H³⁷Cl ? What is the assumption made here? [3+1] **UNIT-II** [13 marks] [Attempt only] 3. a) What are the different radiative and non-radiative paths via which the excited state of a molecule can decay? Explain with the help of Jablonski diagram. [4] b) Why fluorescence is more intense than phosphorescence and always appears earlier than the latter? [3] c) What is photo stationary state? Explain with example. [3]
 - d) In the photochemical decomposition of acetaldehyde by light of wavelength 3100 Å, carbon monoxide is produced with a quantum yield of 0.50. Calculate the rate of formation of CO for an incident light intensity of $10^5 \text{ erg sec}^{-1}$.
- [3]

[3]

Show that,
$$\frac{d[A]}{dt} = \frac{2k_2 I_{abs}}{k_2 + k_3 [A_2]}.$$
 [4]

c) Explain what is meant by [2+2]i) Photosensitized reaction

ii) Chemiluminescence

d) Quantum yield is always one. Justify or criticize.

Group – D

[Attempt **one** question from each unit]

UNIT-I

- 15. Write down the principle of argentometric estimation of chloride ion. [2] a) b) Calculate the ratio of the equivalent weight for $KH(IO_3)_2$ when it participates in both acidbase and redox reactions. [2] Explain the role of metal ion indicator in complexometirc titration. [2] c) d) Explain the role of Zimmermann-Reinhardt reagent during the permanganometric estimation of Fe^{+3} . [2]
- 16. A 0.7120 gm specimen of iron ore is brought into solution and is reduced to Fe(II). The a) reduced solution in 2(N) acid, requires 20 ml of 0.02(M) KMnO₄ solution for titration of Fe(II). Calculate the percentage of iron in the ore. [3]
 - b) What do you mean by masking and de-masking agent in connection with complexometric tiration? Outline the procedure for estimation of Cu and Zn in a mixture compexometically. [3]
 - c) A solution of 0.05 (M) KMnO₄ has been used for titration at pH = 10. What is the normality of the KMnO₄ solution ? Justify your answer. [2]

UNIT-II

- 17. 0.20 gm of an ore containing MnO₂ was treated with excess hydrochloric acid. The Cl₂ a) formed was distilled off and absorbed in KI solution. Titration of the liberated iodine consumed 42.5ml of 0.052 N sodium thiosulphate solution. Calculation the percentage of MnO_2 in the ore.
 - b) Discuss the difference between coprecipitation and postpreceipitation.
 - c) 0.452 gm of AgNO₃ gave a precipitate of 0.415 gm AgCl. Calculate the % Ag in the sample. At.wt. of Ag = 108
 - d) What do you mean by co-precipitation and post precipitation? Give suitable examples.
- State any two advantages of organic precipitation agents over inorganic precipitation agents. 18. [2] a) [2]
 - Out line the steps of gravimetric estimation of Ni⁺² by dimethylglyoxime reagent. b)
 - Give outlines of the analytical procedure for estimation of Fe in Portland cement. c)

UNIT-III

What do you mean by Gravimetric factor? d)

[9 marks]

19. Write the process of detection of a trace amount of CO in air. a) [2] Estimate the standard deviation for the result of following calculation [3] b)

[8 marks]

[2]

[2]

[2]

[2]

[3]

[1]

[8 marks]

[2]

	$y = \frac{157(\pm 6) - 59(\pm 3)}{1220(\pm 1) + 77(\pm 8)}$	
c)	How will you estimate 'Arsenic' in water sample.	[2]
d)	Define COD. Why is it always greater than BOD of a water sample.	[2]
a)	i) What do you mean by R_f value ?	[1]
	ii) R_f values of three amino acids A_1 , A_2 and A_3 are 0.15, 0.5 and 0.65 respectively. Which one of the amino acids in their TLC separation will occur on the top and which one at the	
	bottom. Give reason.	[2]
b)	How can you estimate 'DO' in water sample?	[2]

c) The following results were obtained from a turbidimeter (an instrument that measure turbidity) in a calibration experiment when excess $BaCl_2$ was added to Na_2SO_4 solutions of different concentrations. Assuming a linear relationship between the concentration and instrument readings, calculate the least square slope for the best straight line among the points.

Concentration (mg/L)	0.00	5.00	10.00	15.00	20.00
Instrument	0.06	1.48	2.28	3.98	4.61
Readings					

d) What is SPM2.5?

20.

- × -

[1]

[3]